Structural adaptations of octaheme nitrite reductases from haloalkaliphilic Thioalkalivibrio bacteria to alkaline pH and high salinity
نویسندگان
چکیده
Bacteria Tv. nitratireducens and Tv. paradoxus from soda lakes grow optimally in sodium carbonate/NaCl brines at pH range from 9.5 to 10 and salinity from 0.5 to 1.5 M Na+. Octaheme nitrite reductases (ONRs) from haloalkaliphilic bacteria of genus Thioalkalivibrio are stable and active in a wide range of pH (up to 11) and salinity (up to 1 M NaCl). To establish adaptation mechanisms of ONRs from haloalkaliphilic bacteria a comparative analysis of amino acid sequences and structures of ONRs from haloalkaliphilic bacteria and their homologues from non-halophilic neutrophilic bacteria was performed. The following adaptation strategies were observed: (1) strategies specific for halophilic and alkaliphilic proteins (an increase in the number of aspartate and glutamate residues and a decrease in the number of lysine residues on the protein surface), (2) strategies specific for halophilic proteins (an increase in the arginine content and a decrease in the number of hydrophobic residues on the solvent-accessible protein surface), (3) strategies specific for alkaliphilic proteins (an increase in the area of intersubunit hydrophobic contacts). Unique adaptation mechanism inherent in the ONRs from bacteria of genus Thioalkalivibrio was revealed (an increase in the core in the number of tryptophan and phenylalanine residues, and an increase in the number of small side chain residues, such as alanine and valine, in the core).
منابع مشابه
Biological treatment of refinery spent caustics under halo-alkaline conditions.
The present research demonstrates the biological treatment of refinery sulfidic spent caustics in a continuously fed system under halo-alkaline conditions (i.e. pH 9.5; Na(+)= 0.8M). Experiments were performed in identical gas-lift bioreactors operated under aerobic conditions (80-90% saturation) at 35°C. Sulfide loading rates up to 27 mmol L(-1)day(-1) were successfully applied at a HRT of 3.5...
متن کاملAdaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes.
Haloalkaliphiles are double extremophilic organisms thriving both at high salinity and alkaline pH. Although numerous haloalkaliphilic representatives have been identified among Archaea and Bacteria over the past 15 years, the adaptations underlying their prosperity at haloalkaline conditions are scarcely known. A multi-level adaptive strategy was proposed to occur in haloalkaliphilic organisms...
متن کاملPartial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification
Thioalkalivibrio thiocyanodenitrificans strain ARhD 1 is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a chemolithoautotroph. It is capable of complete denitrification under anaerobic conditions. The draft genome seque...
متن کاملThe Microbial Sulfur Cycle at Extremely Haloalkaline Conditions of Soda Lakes
Soda lakes represent a unique ecosystem with extremely high pH (up to 11) and salinity (up to saturation) due to the presence of high concentrations of sodium carbonate in brines. Despite these double extreme conditions, most of the lakes are highly productive and contain a fully functional microbial system. The microbial sulfur cycle is among the most active in soda lakes. One of the explanati...
متن کاملOptimization of factors affecting on sulfide oxidation from synthetic spent caustic by Haloalkaliphilic Thioalkalivibrio versutus by focus on sodium ion effect: Application of response surface methodology
In the present study, the effects of four factors including initial sulfide concentration (mg l-1 ), agitation speed (rpm), amount of inoculums (%) and sodium concentration (mg l-1) on removal efficiency (%R) and yield of sulfate production by Thioalkalivibrio versutus from synthetic spent caustic were investigated. For this purpose, experiments are designed by design of experiments (DOE) and R...
متن کامل